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The lift on a solid sphere moving along a wall in a parabolic shear flow is obtained
as a regular perturbation problem for low Reynolds number when the sphere is in
the inner region of expansion. Comprehensive results are given for the 10 terms of
the lift, which involve the sphere translation and rotation, the linear and quadratic
parts of the shear flow and all binary couplings. Based on very accurate earlier results
of a creeping flow in bispherical coordinates, precise results for these lift terms are
obtained for a large range of sphere-to-wall distances, including the lubrication region
for sphere-to-wall gaps down to 0.01 of a sphere radius. Fitting formulae are also
provided in view of applications. The migration velocity of an inertialess spherical
particle is given explicitly, for a non-rotating sphere with a prescribed translation
velocity and for a freely moving sphere in a parabolic shear flow. Values of the lift
and migration velocity are in good agreement with earlier results whenever available.
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1. Introduction
Particles carried by a viscous fluid along a wall may be subjected to a lift force

normal to this wall. This lift force has various applications in chemical engineering
processes. It is also important in analytical chemistry, e.g. for the field-flow-
fractionation (FFF) technique, wherein particles pushed by the lift force reach
streamlines of different velocities and are separated therefrom (Giddings 1978). We
consider here the model of a rigid solid spherical particle moving in a shear flow
along a solid plane wall. The particle is small enough for the particle Reynolds
number to be low compared with unity. At leading order in the low Reynolds
number, say order(0) for vanishing Reynolds number, the hydrodynamic force on
the sphere is parallel to the wall, from the linearity of the Stokes equations of
fluid motion (Bretherton 1962). At the next order, say order(1), a small fluid inertia
provides a lift force normal to the wall.

Actually several Reynolds numbers based on the sphere radius a may be considered.
For a sphere translating in a linear shear flow, relevant Reynolds numbers are
ReV = aV/ν f , where V is the fluid velocity relative to the sphere centre, and

ReS = a2K̃S/ν f , where K̃S is the shear rate. Here, ν f denotes the fluid kinematic
viscosity. Since the original works of Oseen (1914) and Proudman & Pearson (1957)
for a translating sphere, and of Saffman (1965) for a moving sphere in a linear shear
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flow, it has been well known that perturbation problems at order(1) are singular in an
unbounded fluid. Since the 1950s and 1960s, such problems have been treated with the
method of matched asymptotic expansions. On the other hand, for a wall-bounded
flow, the problem may be regular at leading order, as shown by Cox & Brenner (1968).
Indeed, when a wall is located in the inner region of expansion, at a distance � from
the sphere centre that is small compared with the Oseen radius a/ReV , the translation
problem at O(ReV ) is regular. Likewise, the shear-flow problem at O(

√
ReS) is regular

when the wall distance is small compared with the Saffman distance a/
√

ReS . There
is a large body of literature on these singular and regular problems. For reviews, see,
e.g., Feuillebois (1989, 2004).

We concentrate here on wall-bounded flows and regular problems. Cox & Brenner
(1968) also proved that the lift force at order(1) may be obtained without solving the
whole flow field, by using an improved version of the Lorentz reciprocity theorem
(see, e.g., Happel & Brenner 1967 for the original theorem) coupling the orders(0) and
(1). This technique was successfully applied by Ho & Leal (1974) to find the lift on
neutrally buoyant spheres moving with a Poiseuille flow between parallel walls. They
qualitatively obtained the effect observed by Segré & Silberberg (1961, 1962a ,b), who
found that particles carried by a Poiseuille flow in a pipe collect on a stream tube
located around 0.6R from the cylinder axis, where R is the cylinder radius. Vasseur &
Cox (1976) revised and improved the results of Ho & Leal (1974). An analogous
calculation by Cox & Hsu (1977) applied the technique of Cox & Brenner (1968)
to the case of a sphere near one wall. Like Vasseur & Cox (1976), they used the
assumption that a/� � 1. Their results for a freely translating sphere that is either not
rotating or freely rotating will be quoted later in this paper. The case of the lift on
a small translating sphere near a wall was examined analytically and numerically by
Cherukat & McLaughlin (1994), who derived expressions for the hydrodynamic force
as a function of the distance from the wall. Their results are valid for 1.1 � �/a � 20
and −5 � ReS/ReV � 5. The lift on a spherical particle attached to a wall in a linear
shear flow was treated by Leighton & Acrivos (1987). Krishnan & Leighton (1995)
generalized their results to the case where a sphere can move along the wall. All these
results were obtained after solving regular perturbation problems, as in Ho & Leal
(1974).

A better comparison with the experiment of Segré & Silberberg (1961, 1962a ,b)
was provided by later works involving a higher pipe flow Reynolds number, whereby
the problem then is singular (see, e.g., Asmolov 1999), but this is out of the scope of
the present paper. Other theoretical and numerical simulations that are not addressed
in this study concern the lift force on drops and bubbles in shear flows (see, e.g.,
Legendre & Magnaudet 1997, 1998 and Magnaudet 2003).

The focus here is on a particle close to a wall in a parabolic shear flow (which has a
linear and a quadratic part). The goal is to provide comprehensive results connecting
earlier works and to complete data for a sphere in the lubrication region.

The formulation for order(0) and order(1) and the solution technique for order(1)
are presented in § 2. Results for the lift force are given in § 3 and for the migration
velocity and some trajectories in § 4. Finally, the conclusion and discussion are
presented in § 5.

2. Problem formulation and solution technique
2.1. Problem formulation

In this subsection, we introduce the various flow fields and the problem expansion
in low Reynolds number. Consider (figure 1) a solid spherical particle with radius a
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Figure 1. Particle moving in a parabolic flow near a wall, superimposing linear shear
and quadratic shear flows.

centred at a distance � from a solid plane wall. We use here a Cartesian coordinates
system with x̃, ỹ along the wall and z̃ normal to it. Let ex , ey and ez be the unit

vectors in these directions. The sphere is translating with a velocity Ũp = Ũpex along

the wall in the x̃ direction and rotating with a velocity Ω̃p = Ω̃pey in the ỹ direction.
The sphere is embedded in an ambient parabolic shear flow along x̃, which can be
written with linear and quadratic parts as

Ṽ ∞ = Ṽ ∞
S + Ṽ ∞

Q with Ṽ ∞
S = K̃Sz̃ex and Ṽ ∞

Q = K̃Qz̃2ex, (2.1)

with dimensional constants K̃S and K̃Q. This flow may represent the near-wall region
in a two-dimensional Poiseuille flow between parallel walls separated by a distance
H . In that case,

K̃S = − H

2µ f

dP̃ ∞

dx̃
and K̃Q =

1

2µ f

dP̃ ∞

dx̃
= −K̃S

H
, (2.2)

where µf is the fluid dynamic viscosity and dP̃ ∞/dx̃ is the pressure gradient. The flow
(2.1) may also represent the first-order terms in an expansion in z̃ of a boundary-layer
flow along a wall.

We denote by Ṽ the velocity of the flow field influenced by the presence of the
sphere, or a perturbed flow. In a reference frame moving with the particle centre,
the perturbed velocity field is written as Ṽ = Ṽ ∞ − Ũp + ṽ, where ṽ denotes the
perturbation velocity which is the unknown of this problem. Similarly, we define the
perturbed and perturbation pressures P̃ and p̃, respectively. The boundary conditions
for the perturbation velocity are as follows:

ṽ = Ũp + Ω̃p × r̃ − Ṽ ∞, on the sphere surface,

ṽ = 0, on the wall,

ṽ → 0, at infinity.

⎫⎪⎬
⎪⎭ (2.3)

Here, r̃ denotes a vector connecting the sphere centre to a point on its surface. The
velocities are normalized by a characteristic velocity V ∗ (which remains to be defined
in each case), the pressures by µ f V

∗/a and lengths by a. The dimensionless quantities
will be denoted without tilde ( ·̃ ). The particle Reynolds number based on the sphere
radius and velocity V ∗ is assumed to be small compared with unity:

Re =
aV ∗

ν f
� 1. (2.4)
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This condition should be enforced with a significant V ∗, typically V ∗ = max{|Ṽ ∞
0 − Ũp|,

a|K̃S |, a2|K̃Q|}, where Ṽ ∞
0 is the unperturbed velocity at the sphere centre. However,

for a purely rotating sphere, V ∗ = a|Ω̃p|.
The expansions of the dimensionless perturbation fluid velocity and pressure in

terms of the Reynolds number are written as

v = v(0) + Re v(1) + O(Re2), p = p(0) + Re p(1) + O(Re2). (2.5)

The dimensionless translation and rotation velocities of the sphere are expanded in
the same way:

Up = U (0)
p + Re U (1)

p + O(Re2), Ωp = Ω (0)
p + Re Ω (1)

p + O(Re2). (2.6)

Replacing p, v, Up and Ωp by their expansions in Re, the Navier–Stokes equations
with boundary conditions (2.3), at order(0), yield

�v(0) − ∇p(0) = 0, (2.7a)

∇ · v(0) = 0, (2.7b)

i.e. Stokes equations, with the boundary conditions

v(0) = U (0)
p + Ω (0)

p × r − V ∞, on the sphere surface,

v(0) = 0, on the wall,

v(0) → 0, at infinity.

⎫⎪⎬
⎪⎭ (2.8)

The bispherical coordinates system (η, ξ, φ) is a familiar tool to solve such
problems (see, e.g., Appendix A in Happel & Brenner 1967). It is defined from

the cylindrical coordinates (ρ = ρ̃/a =
√

x̃2 + ỹ2/a, φ = tan−1(ỹ/x̃), z = z̃/a) by (2.9)–
(2.11) (see figure 2):

ρ = c
sin η

cosh ξ − cos η
, (2.9)

z = c
sinh ξ

cosh ξ − cos η
, (2.10)

c =
√

�2/a2 − 1, (2.11)

where (η, ξ, φ) ∈ [0, π] × [0, α] × [0, 2π]. As shown figure 2, the wall is represented
by ξ = 0 and the sphere by ξ = α, with �/a = coshα, where α is a positive constant.

2.2. Various solutions for a sphere in Stokes flows

Solutions using the bispherical coordinates were obtained for the translation and
rotation of a sphere in the fluid at rest by O’Neill (1964) and for a sphere held fixed
in a linear shear flow by Tözeren & Skalak (1977). Chaoui & Feuillebois (2003)
reconsidered these problems with a technique providing a high accuracy, even in the
lubrication region. In a similar way, Pasol, Sellier & Feuillebois (2006) treated the case
of a sphere held fixed in a quadratic shear flow. Since the fluid velocity at order(0) is
necessary for the calculation of the lift force at order(1), some details are provided in
Appendix A.
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Figure 2. Bispherical coordinates.

Results for the hydrodynamic force F and torque C on the particle may be written
in terms of friction factors in the various cases of

translation: FT
x = −6πaµf Ũpf T

xx, CT
y = 8πa2µf ŨpcT

yx, (2.12)

rotation: FR
x = 6πa2µf Ω̃pf R

xy, CR
y = −8πa3µf Ω̃pcR

yy, (2.13)

a linear shear flow: FS
x = 6πaµf �K̃Sf

S
xx, CS

y = 4πa3µf K̃Sc
S
yx, (2.14)

a quadratic shear flow: FQ
x = 6πaµf �2K̃Qf Q

xx, CQ
y = 8πa3µf �K̃QcQ

yx, (2.15)

with obvious notation. All friction factors, denoted by f for the force and c for the
torque, are functions of �/a only. They are defined so that their limit is unity for
�/a → ∞ except for cT

yx and f R
xy , which vanish. The translation and rotation velocities

of the particle are determined from its equations of motion, using these expressions
for the values of F and C. In the particular case of a freely translating and rotating
sphere in a linear shear flow, FR

x +FT
x +FS

x =0 and CR
y +CT

y +CS
y = 0 give Ũp = aK̃SU

S
p

and Ω̃p = K̃SΩ
S
p with

US
p =

�

a
cR
yyf

S
xx +

1

2
cS
yxf

R
xy

cR
yyf

T
xx − cT

yxf
R
xy

, ΩS
p =

�

a
cT
yxf

S
xx +

1

2
cS
yxf

T
xx

cR
yyf

T
xx − cT

yxf
R
xy

, (2.16)
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whereas in a quadratic shear flow, FR
x + FT

x + FQ
x = 0 and CR

y + CT
y + CQ

y = 0 give

Ũp = a2K̃QUQ
p and Ω̃p = aK̃QΩQ

p with

UQ
p =

(
�

a

)2

cR
yyf

Q
xx +

�

a
cQ
yxf

R
xy

cR
yyf

T
xx − cT

yxf
R
xy

, ΩQ
p =

(
�

a

)2

cT
yxf

Q
xx +

�

a
cQ
yxf

T
xx

cR
yyf

T
xx − cT

yxf
R
xy

. (2.17)

Superimposing the linear and quadratic shear flows (see (2.1)), the dimensional
translation and rotational velocities of a freely moving sphere are

Ũp = aK̃SU
S
p + a2K̃QUQ

p , (2.18a)

Ω̃p = K̃SΩ
S
p + aK̃QΩQ

p . (2.18b)

2.3. Solution technique for the inertial lift force

At next order in Reynolds number, the Navier–Stokes equations and boundary
conditions yield

∇ · v(1) = 0,

�v(1) − ∇p(1) = f ,

}
(2.19)

where

f = v(0) · ∇v(0) + v(0) · ∇V ∞ + (V ∞ − Up) · ∇v(0), (2.20)

with the boundary conditions

v(1) = U (1)
p + Ω (1)

p × r, on the sphere surface,

v(1) = 0, on the wall,

v(1) → 0, at infinity.

⎫⎪⎬
⎪⎭ (2.21)

Here, the particle is assumed to be close enough to the wall, or the Reynolds number
small enough, for the wall to be in the inner region of expansion �/a � (1/Re,
1/

√
ReS).

The dimensionless force on the sphere, using the reference aµf V ∗, is obtained as

an expansion: F = F(0) + Re F(1) + O(Re2). As seen above, F(0) is a drag force along
the wall. The force F(1) contains a correction to the drag plus a lift force which is
perpendicular to the ambient flow relative to the sphere, and thus is normal to the
wall. This study is concerned with the calculation of this lift force, say F (1)

z , which
has various applications, e.g. for separation techniques (see § 1). To obtain F (1)

z ,
calculating the whole flow field (v(1), p(1)) is unnecessary. It is sufficient to use a
variation of the Lorentz reciprocity theorem proposed by Cox & Brenner (1968) and
exploited by Ho & Leal (1974). This approach provides the relationship

F (1)
z − 6πDzU

(1)
pz = −

∫
Vf

f · w dV, (2.22)

where Vf is the fluid domain, U (1)
pz is the (order(1)) migration velocity in the z direction

of an inertialess freely moving particle, w is the Stokes flow velocity due to a sphere
moving with unit velocity perpendicular to the wall and −Dz is the drag force on this
moving sphere. The solution for Dz was obtained independently by Brenner (1961)
and Maude (1961) as a series in bispherical coordinates. It is valid for non-zero
gaps. Typically, thousands of terms are needed for small gaps. Alternatively, the
second-order expansion for small gaps by Cox & Brenner (1967) might be sufficient,
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depending on the required precision. Now, we may consider two particular cases:
(a) The particle velocity Up is imposed, so that Up = U (0)

p and U (1)
p =0. Then the

dimensionless lift force can simply be expressed in terms of the velocity field at
order(0) as

Fz = −Re

∫
Vf

f · w dV = −ReL. (2.23)

(b) The inertialess particle is moving freely; then, from the zero-net-force condition
we obtain the dimensionless migration velocity:

Um = Re U (1)
pz =

Re

6πDz

∫
Vf

f · w dV =
Re

6πDz
L. (2.24)

A discussion about particle inertia is appropriate here. Since the particle velocity
along z is of order O(Re), fluid inertia due to this motion is O(Re2) and is thus
negligible. As for particle inertia, it is characterized by a Stokes number Sk = τp/τf ,
ratio of the particle characteristic time τp = mp/(6πaµf ), where mp is the particle
mass, to the ambient flow characteristic time τf = a/V ∗, giving Sk ∼ (ρp/ρf )Re.

In a liquid, the ratio of particle to fluid density, ρp/ρf , is of order unity, so that
Sk ∼ Re � 1. More precisely, the particle equation of motion for translation in the
direction normal to the wall, in terms of the dimensionless position Z = �/a and time
t = t̃/τf (where t̃ is the dimensional time), is

4π

3
Re

ρp

ρf

dZ

dt
+ 6πDz

dZ

dt
+ ReL(Z) = 0. (2.25)

Balancing the drag force (the second term) and the lift force (the third term) gives
the time scaling t ∼ 1/Re. For ρp/ρf = O(1), particle inertia represented by the first
term is negligible for the largest part of the time, t ∼ 1/Re.

On the other hand, for solid particles in a gas, ρp/ρf 	 1; then in some conditions,
Sk might be of order unity so that particle inertia would be significant. In that case,
the particle equations of motion for translation and rotation would have to be solved.
In the equation of motion for rotation, there are inertial corrections to the torque
which are not considered here. This problem of particles with ρp/ρf 	 1 giving a
significant particle inertia is out of the scope of the present paper.

We recall that in (2.23) and (2.24), f is given by (2.20), in which v(0) is very
accurately calculated with the method of bispherical coordinates. As for w, the
analytical solution of Brenner (1961) and Maude (1961) as a series is useful for our
purpose of obtaining accurate results even down to the lubrication region. Details are
given below in § 2.4.

It can be verified that the problem is of regular perturbation. Indeed, given the
rapid decay of f and w at infinity, the integral over the semi-infinite domain Vf is
convergent, unlike for the case of a sphere immersed in an infinite domain which
would lead to the Whitehead paradox. This is because the fluid velocity due to a
translating sphere in an unbounded fluid decays like 1/r whereas this decay is more
rapid here because of the image of the sphere in the wall (Cox & Brenner 1968).
Details of the behaviours of f and w at infinity are given in Appendix C (following
the details concerning f in Appendix B).

The perturbation velocity v(0), i.e. the solution of (2.7) and (2.8), is a linear
combination of the following perturbation flows: vT and vR for a translating,
respectively rotating, sphere in a fluid at rest; vS and vQ for a fixed sphere in a
linear, respectively quadratic, shear flow parallel to the wall. Therefore, the general
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solution is written as

v(0) = TSvS + TQvQ + TRvR + TT vT , (2.26)

where TT , TR, TS, TQ are dimensionless ratios given by

TT =
Ũp

V ∗ , TR =
aΩ̃p

V ∗ , TS =
aK̃S

V ∗ , TQ =
a2K̃Q

V ∗ . (2.27)

After substitution of v(0) in the expression (2.20) of f , we find

L = T 2
S LS + T 2

Q LQ + T 2
R LR + T 2

T LT + TS TQ LSQ + TS TR LSR

+ TS TT LST + TQ TR LQR + TQ TT LQT + TR TT LRT , (2.28)

with

LS =

∫
Vf

(
vS · ∇V ∞

S +
(
vS + V ∞

S

)
· ∇vS

)
· w dV, LT =

∫
Vf

((vT − ex) · ∇vT ) · w dV,

(2.29)

LSR =

∫
Vf

(
vR · ∇

(
vS + V ∞

S

)
+
(
vS + V ∞

S

)
· ∇vR

)
· w dV, LR =

∫
Vf

(vR · ∇vR) · w dV,

(2.30)

LST =

∫
Vf

(
vT · ∇

(
vS + V ∞

S

)
+
(
vS + V ∞

S

)
· ∇vT − ex · ∇vS

)
· w dV, (2.31)

LRT =

∫
Vf

(vR · ∇vT + (vT − ex) · ∇vR) · w dV, (2.32)

LSQ =

∫
Vf

((
vS + V ∞

S

)
· ∇vQ +

(
vQ + V ∞

Q

)
· ∇vS + vQ · ∇V ∞

S + vS · ∇V ∞
Q

)
· w dV. (2.33)

The expressions of LQ, LQR and LQT are obtained in a similar way, by replacing vS

and V ∞
S by the velocities vQ and V ∞

Q of a quadratic flow in the above expressions of
LS , LSR and LST .

In dimensional form, the lift force is F = ρf a2V ∗2L, where ρf is the fluid density,
so that the arbitrary V ∗ cancels out as it should.

2.4. Numerical calculation of integrals

The various terms of the integrals appearing in (2.28) were derived in bispherical
coordinates. Some details are given in Appendix B. The various integrals in (2.28)
were then calculated numerically with a high accuracy for a wide range of sphere-
to-wall distance �/a, down to the lubrication region �/a − 1 � 1. In this last case,
the order(0) velocities vary fast in the small gap between the sphere and the wall.
The solutions in bispherical coordinates for these velocities then need an increasingly
large number (typically thousands) of terms for decreasing �/a − 1. The velocity w

for the motion normal to the wall was calculated using the series solutions of Brenner
(1961) and Maude (1961). The other terms for asymmetric sphere motions were
calculated using the results of Chaoui & Feuillebois (2003) and Pasol et al. (2006),
who used an explicit rapid method for solving with a high accuracy the recurrence
relationship giving coefficients in the series (see Appendix A for these series). The
counterpart is that a large number of digits have to be used to avoid the accumulation
of round-off errors generated by successive iterations. For this purpose, calculations
were performed with the MapleTM symbolic language, adjusting the number of digits
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for a prescribed accuracy. In the MapleTM code, the calculation of the volume integrals
(2.28) was enclosed in a loop in which the number of digits was increased, until the
obtained result for a prescribed accuracy did not depend any more on the number of
digits. Practically, between 30 and 120 digits were necessary, depending on the case
considered. For the integration itself, we used the Gauss–Kronrod technique. Results
were compared with those obtained with the two-dimensional Richardson–Romberg
and Gauss–Legendre techniques (see, e.g., Kythe & Schferkotter 2004 for a description
of these techniques). The number of points in the integration was 15–21, depending
on the sphere position. For example, for the case LS , obtaining a 10−16 precision at
a gap �/a − 1 = 10−2 required typically 120 digits, 1284 terms in the series and 21
integration points. For �/a − 1 � 0.01, numerical values were practically difficult to
obtain since the calculation time in MapleTM was typically several weeks on a standard
PC.

3. Results for the lift force
This section provides numerical results for the 10 terms in the expression (2.28) of

the dimensionless lift force in a wide range of sphere-to-wall distances. The precise
numerical values found for each single elementary flow are first presented in table 1.
These data are then compared with earlier results whenever available. Formulae fitting
the numerical results for the lift force are provided for each elementary flow in terms
of the wall-to-particle distance. The case of a sphere held fixed in shear flows is in
§ 3.1 and those of a rotating and translating sphere in a fluid at rest are in § 3.2.
Finally, § 3.3 presents the terms which arise when sphere motions are coupled with
ambient flows.

3.1. Sphere held fixed in linear and quadratic shear flows

For a sphere at rest, the velocity fields vR, vT and their gradients are set to zero in
the expression (2.28) giving v(0). The integrals LR , LT , LSR , LST , LQR , LQT and LRT

then vanish.
In the case of a linear shear flow, the dimensional lift force is eventually written

as F̃L = ρa4K̃2
SLS . Figure 3 shows the evolution of the normalized lift force LS with

the particle-to-wall distance �/a. Among earlier works, calculations of Cherukat &
McLaughlin (1994) are those that better reflect the lift force near the wall, in the range
�/a � 1.1. In the limit case of a sphere in contact with the wall, �/a = 1, Krishnan &
Leighton (1995) obtained the value LS = 9.257. It is observed in the insets of figure 3
that our values of the lift force for �/a in the interval [1.1, 3] are close to those
of Cherukat & McLaughlin (1994) but slightly less. For �/a in the interval [3, 10],
our values are between those of Cherukat & McLaughlin (1994) and Cox & Hsu
(1977). Our precise results resolve here the discrepancy between those earlier data. For
positions �/a above 10, our results confirm the values proposed by Cox & Hsu (1977).
With our method, we could even obtain values of the lift force for dimensionless gaps
�/a − 1 in the interval [0.01, 0.1].

A quadratic shear flow usually occurs in combination with a linear shear flow.
Consider the case where the sphere is fixed in a parabolic flow. The lift force is given
by the general relationship (2.28) with Up = Ωp = 0. We choose here V ∗ = aK̃S . The
lift force is plotted in figure 4 versus �/a for various values of H/a and compared
with that obtained for the linear shear flow. When the sphere is close to the wall, at
�/a = 1.05, in the case of a linear shear flow, the lift force takes the value of 10.142,
whereas in the case of a parabolic flow, it varies from 9.2525 for H = 100a to 10.124
for H =5000a. The lift force vanishes at some distance from the wall. For example,
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�/a LS LSQ LSR LST LQ LQR LQT LRT LR LT

100 50363.67 2.359 × 107 5979.724 −566.426 1.855 × 109 24715.47 −1.142 × 105 −2.456 8.90 × 10−5 1.771
20 2026.330 1.815 × 105 236.217 −117.975 2.838 × 106 978.101 −4470.540 −2.456 0.0022 1.777
15 1146.476 7.707 × 104 130.770 −90.318 9.055 × 105 547.219 −2651.390 −2.444 0.0039 1.780
10 516.623 2.349 × 104 56.114 −62.674 1.855 × 105 238.771 −1310.936 −2.417 0.0088 1.785
5 135.661 3354.412 12.688 −34.652 1.378 × 105 52.042 −407.616 −2.323 0.0343 1.791
4 89.228 1851.667 7.7858 −28.854 6242.164 29.361 −277.917 −2.270 0.0523 1.789
3 52.710 888.072 4.132 −22.884 2347.287 11.716 −166.753 −2.177 0.0885 1.780
2 26.109 339.662 1.660 −16.662 655.029 −0.644 −74.552 −1.987 0.178 1.756
1.5 16.503 181.899 0.806 −13.477 285.512 −4.478 −27.921 −1.791 0.282 1.735
1.1 10.702 96.646 0.193 −11.179 125.700 −5.549 27.015 −1.228 0.457 1.731
1.07 10.385 92.687 0.108 −11.049 117.357 −5.563 37.836 −1.023 0.477 1.729
1.05 10.142 90.136 0.061 −10.967 102.932 −5.561 47.218 −0.794 0.491 1.728
1.01 9.451 85.283 0.018 −10.814 − − 64.419 −0.139 0.526 1.748

Table 1. Values of the 10 integrals in (2.28) which give the dimensionless lift force as a function of the normalized position of the sphere
centre, �/a.
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Figure 3. Lift force on a fixed sphere in a linear shear flow and comparison with the results
of Cherukat & McLaughlin (1994), Cox & Hsu (1977) and Krishnan & Leighton (1995).

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
(×104)

L

 

 

linear shear flow

parabolic flow with H = 5000a

parabolic flow with  H = 1000a

parabolic flow with  H = 500a

parabolic flow with H = 200a

parabolic flow with  H = 100a

1.05 1.10 1.15 1.20 1.25 1.30 1.35
9

10

11

12

13

14

15

 

 

�/a

Figure 4. Lift force on a fixed sphere in a parabolic flow for various values of H/a and a
comparison with the linear shear flow.

in the case H = 200a, it vanishes for �/a = 55, that is �/H = 0.275. This value is exact
for an ambient flow involving a pressure gradient and a shear near a single wall. For
two walls separated by the distance H , this is clearly an approximation. For a handy
use of our numerical results, a sample of which is presented in table 1, we propose
the following fitting formula for the normalized lift force on a sphere held fixed in a
linear shear flow, which is valid for Re � 1 and all distances 1.01 � �/a � 100:

lnLS =
2.0172λ5 + 3.4562λ4 + 3.9608λ3 + 2.6728λ2 − 0.15728λ + 0.01386

λ4 + 0.96328λ3 + 1.264λ2 − 0.07648λ + 0.006228
, (3.1)

with λ= ln(�/a).
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Figure 5. Exact solution and fitted formula (see (3.5)) for the lift force on a rotating sphere
in a fluid at rest. Insets show a zoom on the near-wall region and the relative error.

In the case of a quadratic shear flow, results for the normalized lift force are fitted
by

lnLQ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

191.2λ4 + 13.91λ3 + 332.2λ2 − 76.63λ + 376

λ3 + 87.64λ3 − 61.84λ + 82.28
, if

�

a
< 2,

3.639λ4 + 13.64λ3 + 28.87λ2 + 27.38λ − 57.25

λ3 + 1.408λ2 + 12.13λ − 12.35
, if

�

a
� 2.

(3.2)

For the integral coupling a quadratic flow and a linear shear flow, we obtain the
fitting

lnLSQ =

⎧⎪⎪⎨
⎪⎪⎩

20.44λ5 + 8.227λ4 + 16.24λ3 + 13.69λ2 + 20.4λ + 24.19

λ5 + 0.1743λ4 + 7.395λ3 − 1.543λ2 + 3.093λ + 5.455
, if

�

a
< 2,

2.965λ5 − 4.143λ4 + 21.64λ3 + 53.86λ2 + 68.25λ + 81.7

λ4 + 10.34λ3 + 6.86λ2 + 6.86λ + 18.64
, if

�

a
� 2.

(3.3)

These formulae fit our precise results with a 0.1 % accuracy.

3.2. Translating and rotating sphere in a fluid at rest

This subsection concerns a sphere with a pure rotating motion, a pure translating
motion and the coupling between rotation and translation in a fluid at rest at infinity.
For these configurations, cancelling out the contributions of the linear and quadratic
shear flows gives the following expression for the dimensional lift force:

F̃L = ρa
[
(aΩ̃p)2LR + (Ũp)2LT + (aΩ̃pŨp)LRT

]
. (3.4)

The numerical values of the integrals LR , LT and LRT are displayed in table 1 and
are, respectively, represented in figures 5, 6 and 7. For pure translation, our results
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Figure 6. Exact solution and fitted formula (see (3.6)) for the lift force on a translating sphere
in a fluid at rest and comparison with the results of Cherukat & McLaughlin (1994). Insets
show a zoom on the near-wall region and the relative error.
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Figure 7. Exact solution and fitted formula (see (3.7)) for the lift force coupling term for a
rotating and translating sphere in a fluid at rest. Insets show a zoom on the near-wall region
and the relative error.

are in good agreement with those of Cherukat & McLaughlin (1994). By comparison,
the value obtained by Cox & Hsu (1977) is LT = 18π/32 
 1.767.

Fitting formulae in the range 1.01 � �/a � 100 are as follows.
(i) For a rotating sphere:

ln LR =
−1.984λ5 + 12.8λ4 − 23.08λ3 + 17.48λ2 − 26.73λ − 14.17

λ4 − 6.618λ3 + 13.17λ2 − 14.12λ + 22.45
. (3.5)
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(ii) For a translating sphere:

�

a
LT =

1.77

(
�

a

)4

+ 14.48

(
�

a

)3

+ 45.52

(
�

a

)2

− 42.67

(
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a

)
+ 9.243(
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a

)3

+ 8.14

(
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a

)2

+ 23.59

(
�

a

)
− 16.54

. (3.6)

(iii) For the rotation–translation coupling:

�

a
LRT

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.48

(
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)4
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)3
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(
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)2
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− 0.9147(
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)
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� 2.

(3.7)

3.3. Coupling sphere motion with ambient flows

Various coupling terms appear when the sphere is rotating and translating in ambient
shear flows. We propose here fitting formulae for these lift force terms.

(i) Coupling shear flow and rotating sphere:

a

�
LSR

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(3.8)
(ii) Coupling shear flow and translating sphere:

LST =
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(3.9)
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(iii) Coupling quadratic flow and rotating sphere:
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(iv) Coupling quadratic flow and translating sphere:
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(3.9)

These formulae are valid for particle positions in the range 1.01 � �/a � 100.
Their relative error is below 2 %. These results will be applied in the next
section.

4. Results for the migration velocity
Results of § 3 are exploited here to derive the migration velocity of an inertialess

sphere in the case of no external force. The two cases of a sphere without rotation
and of a freely rotating sphere will be considered: § 4.1 is concerned with a sphere
moving in a linear shear flow and § 4.2 with a sphere immersed in a parabolic shear
flow. We apply these results in § 4.3 to calculations of trajectories of an inertialess
freely moving sphere in a parabolic shear flow near a wall.

For a Poiseuille flow (see figure 8), the maximum velocity is Vm = HK̃S/4 =
−H 2K̃Q/4. We keep here the notation Vm and H to define the parabolic flow with
one wall. Thereafter, the characteristic velocity for this type of geometry is given
by

V ′
∞ = Ũp − Ṽ ∞|z=�.

In works on multiphase flows, V ′
∞ is called a ‘slip velocity’. For a sphere far from the
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Figure 8. Particle moving in a parabolic flow near a wall. The domain of validity of our
approach, � � H , is schematically represented in a grey shade.

wall, Cox & Hsu (1977) proposed an expression of the migration velocity for
(i) a sphere without rotation:

U (1)
pz =

3
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aV ′2
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ν
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, (4.1)

(ii) a freely rotating sphere:

U (1)
pz =
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. (4.2)

The expressions (4.1) and (4.2), in principle valid for a/� � 1, contain three terms
which were obtained for three separate cases by Cox & Hsu (1977), and they showed
how to match the different cases. In the case |V ′

∞/Vm| ∼ 1 with a/� � 1, they obtained
the first two terms in (4.1) and (4.2), and, in the case |V ′

∞/Vm| � (a/�)2 � 1, they
found the last term in each equation. It is sufficient for our purpose, and even more
precise, to take into account only the relevant terms of (4.1) and (4.2) in each specific
case. We will extrapolate these results to smaller sphere-to-wall distances (a/� ∼ 1), in
order to assess their practical validity by comparing with our results.

4.1. Migration of sphere in a linear shear flow

In this subsection, we consider a moving sphere in a linear shear flow. The sphere is
either non-rotating and translating with a prescribed velocity Ũp along x̃ (§ 4.1.1) or
freely rotating and translating (§ 4.1.2).

4.1.1. Translating and non-rotating sphere in a linear shear flow

The migration velocity is given by the relationship (2.24) with (2.28), cancelling out
terms due to a rotating sphere and a quadratic shear flow. For a better comparison
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Figure 9. Normalized migration velocity U(�/a, 1) of a sphere with an imposed translation
velocity Ũp = aK̃S parallel to the wall and without rotation in a linear shear flow. The quantity
U(�/a, 1) is represented versus �/a. Our result (solid line) and comparison with the results of
Cox & Hsu (1977) and Cherukat & McLaughlin (1994).

with the results of Cherukat & McLaughlin (1994), the expression for the dimensional
migration velocity may be written as

Ũpz = V ∗ReU (1)
pz =

aŨ 2
p

νf

U
(

�

a
,
aK̃S

Ũp

)
, (4.3)

with

U
(

�

a
,
aK̃S

Ũp

)
=

1

6πDz

{
LT +

aK̃S

Ũp

LST +

[
aK̃S

Ũp

]2

LS

}
. (4.4)

Here, we choose V ∗ = aK̃S . For example, figure 9 represents (4.4) in the particular
case aK̃S/Ũp = 1 for comparison with the results of Cherukat & McLaughlin (1994).
Our results are close to theirs with a relative error of 10−2 in the range 2.3 � �/a � 20.
Our results are also close to the values of the velocity obtained by Cox & Hsu (1977)
(with the first two terms in (4.1)). The 15 % difference at �/a = 2.5 decays for large
�/a to become of the order of a few per cent for �/a = 100. This difference may be
understood since their formula is an approximation for large �/a. Surprisingly, the
result of Cox & Hsu (1977) again matches ours for �/a = 1.5 and below.

4.1.2. A freely moving sphere in a linear shear flow

For a freely translating and rotating sphere in a linear shear flow, the migration
velocity is given by (2.24) with (2.28), cancelling out terms due to the quadratic
flow. Similarly to (4.3) and (4.4), the dimensional migration velocity is written as
follows:

Ũpz =
aŨ 2

p

νf

V
(

�

a

)
, (4.5)
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Figure 10. Normalized migration velocity V (�/a) of a freely translating and rotating sphere
in a linear shear flow. The quantity V (�/a) is represented versus �/a. This result (solid line)
and comparison with the results of Cox & Hsu (1977) and Cherukat & McLaughlin (1994).

where
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by choosing V ∗ = aK̃S . Here, the sphere dimensionless translational and rotational
velocities are given by (2.16). The quantity V (�/a) is represented versus �/a in
figure 10 and compared with earlier results. The behaviour is similar to figure 9.

4.2. Migration of a sphere in a parabolic flow

In this subsection, we treat the cases of a non-rotating sphere translating with a
prescribed velocity Ũp (§ 4.2.1) and of a freely moving sphere (§ 4.2.2). The ambient
flow is parabolic, with velocity given by (2.1).

4.2.1. Translating and non-rotating sphere in a parabolic shear flow

The dimensional migration velocity of the non-rotating sphere translating with
prescribed velocity Ũp along x may be written as

Ũpz =
aŨ 2

p

ν
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�
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Ũp

)
, (4.7)
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Figure 11. Normalized migration velocity W
(
�/H, a/H, aK̃S/Ũp

)
of a non-rotating sphere

with an imposed translation velocity Ũp = aK̃S in a parabolic flow Ṽ ∞ = K̃S z̃ + K̃Qz̃2 with

K̃Q = − K̃S/H in the example case H/a = 200, and comparison with the results of Cox & Hsu
(1977) and Vasseur & Cox (1976).

by choosing V ∗ = aK̃S . Figure 11 represents the normalized migration velocity (4.8)
when the sphere-imposed translation velocity is Ũp = aK̃S; in the example case,
H/a =200. For a sphere coming in contact with the wall, �/H → a/H = 0.005, the
normalized migration velocity W is small but non-zero, as shown in the inset of
figure 11. Our result is compared with that of Cox & Hsu (1977) (the first two terms
in (4.1)). It is close to theirs at large distances, as it should since their assumption
is a/� � 1. Again here, the small difference of the order of a few per cent may be
due to their formula being an approximation for large �/a. The difference increases
at smaller distances, as shown in the inset, but both results match at �/H → 0, a
surprising result. It is observed that the migration velocity goes through zero, so that
there is an equilibrium position for a particle-to-wall distance close to �/H = 0.193. By
comparison, Cox & Hsu (1977) find an equilibrium position located at �/H = 0.209.
From the sign of the migration velocity, this equilibrium position is stable. It should
be noted that this migration-velocity profile is exact for a single wall but, for a
Poiseuille flow between two walls, it is only an approximation valid when �/H � 0.1.
Indeed, as observed in figure 11, the migration velocity for two walls obtained by
Vasseur & Cox (1976) differs widely from the one for a single wall when �/H > 0.1.

4.2.2. A freely moving sphere in a parabolic shear flow

The expression of the dimensional migration velocity then is written as

Ũpz =
aŨp

2

νf

X
(

�

H
,

a

H

)
, (4.9)

where

X
(

�

H
,

a

H

)
=

1

6πDz

{
LT +

aK̃S

Ũp

[
LCT +

Ω̃p

K̃S

LRT +
aΩ̃p

Ũp

LSR − a

H
LQT

− a

H

aΩ̃p

Ũp

LQR

]
+

[
aK̃S

Ũp

]2
[
LS +

[
a

H

]2

LQ − a

H
LSQ +

[
Ω̃p

K̃S

]2

LR

]}
, (4.10)
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Figure 12. Normalized migration velocity (H/a)2(Ũpz/Vm)2X(�/H, a/H ) of a freely moving
sphere in a parabolic flow (in the example case H/a = 200) and comparison with the results
of Ho & Leal (1974), Vasseur & Cox (1976) and Cox & Hsu (1977).

by choosing V ∗ = aK̃S . Here, the translational and rotational velocities of a freely
rotating and translating sphere in a parabolic shear flow are given by (2.18) with
(2.16) and (2.17).

The result of (4.10) is presented in figure 12 and compared with those of Cox & Hsu
(1977) (the last term in (4.2)) and Vasseur & Cox (1976). We use here the normalization
of figure 8 of Vasseur & Cox (1976) and represent (H/a)2(Ũpz/Vm)2X (�/H, a/H )
versus �/H , taking as an example H/a =200.

As in figure 11, our result is close to that of Cox & Hsu (1977), within a few per
cent error at large distances. Both results again surprisingly match at small distances
for which there is a non-zero migration velocity. Our results show a stable equilibrium
position for �/H = 0.149. As displayed in the figure, this position is very close to the
value �/H = 11/73 
 0.1507 obtained by Cox & Hsu (1977).

Our results for the near-wall region are also consistent with figure 8 of Vasseur &
Cox (1976). At large distances, the influence of the other wall considered by these
authors gives a quite different equilibrium position. Note for the case when the wall
is in the outer region, the result by Asmolov (1999) for a channel Reynolds number
of 15 is close to the result of Vasseur & Cox (1976) for the case when the wall is in
the inner region (our case), surprisingly even for small �/H . Thus, our results are also
close to those data of Asmolov (1999) for small �/H .

4.3. Trajectories of a freely moving sphere in a parabolic shear flow

Using the previous calculations of the migration velocity (4.9) and axial velocity (2.16)
and (2.17), we calculate the trajectories followed by an inertialess freely translating
and rotating sphere in a parabolic flow limited by one wall. The conditions for particle
inertia to be neglected are discussed in § 2.3, after (2.24); this is the case for a particle
in a liquid.

Combining (4.9), (2.16) and (2.17), the differential equation for the trajectories
(�/H versus x̃/H or �/a versus x̃/a, where x̃ is the axial position of the
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Figure 13. Trajectories of a freely moving sphere in a parabolic flow with H/a =200.

sphere) is

∂�

∂x̃
=

∂�

∂t̃
· ∂t̃

∂x̃
=

Ũpz

Ũp

=
aŨp

νf

X
(

�

H
,

a

H

)
, (4.11)

where t̃ is the time. This equation was solved numerically for some initial positions
(�/a)x =0 = (�/a)0 and for H = 200a. The results are shown in figure 13 (solid lines)
for (�/a)0 = 1.05 and 90. Note that, particle inertia being negligible, the two displayed
trajectories are ‘universal’ in the sense that any point on a trajectory could be
considered as a starting position. The trajectories are monotonically converging to an
equilibrium position. There is no oscillation around this asymptote because particle
inertia is negligible. The final equilibrium position is for �/a = 29.8 corresponding to
�/H =0.149, as found in § 4.2.2. Particles leaving from the position close to the wall
at (�/a)0 = 1.05 reach the equilibrium position after a distance of around 9H . The
departure from a position near the wall is quite slow since it takes typically 160 radii
for a particle to move a 0.2 radii away from the wall (see inset of figure 13). This
remark may be relevant for the FFF separation technique in analytical chemistry, in
which particles to be separated are released near a wall.

Our results are compared in figure 13 with those of Cox & Hsu (1977) (dashed
lines), Vasseur & Cox (1976) (dotted lines) and Ho & Leal (1974) (dashed–dotted
lines). For the slow departure from a wall (inset in figure 13), results are quite different
and the importance of our precise account of particle–wall interactions is emphasized
here. The final equilibrium position for one wall obtained from our calculation is
the same as that of Cox & Hsu (1977). The time it takes to reach this position is
practically the same if the particle is leaving from �/a =90 but it is quite different if
the particle is leaving from a position near the wall, at �/a = 1.05.

In the case of two walls, results of Vasseur & Cox (1976) provide the best
approximation in the centre of the channel. For practical applications in the case
of two walls, for a better precision our formula for a particle close to one wall could
be combined with those of Vasseur & Cox (1976) valid for particles far away from
two walls.
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For a horizontal ambient flow, the weight of the particle may be taken into account
by superimposing it to the lift force without modification. As explained in § 2.3, this
superposition approximation is valid provided both forces are of the same order.

5. Conclusion and discussion
This paper is concerned with an inertialess spherical particle moving parallel to

a wall in an ambient flow. Here, it appears that the particle is inertialess when its
density is of the order of the fluid density, or less, as explained in the discussion
following (2.24). The present analysis is limited to motions perpendicular to the wall
being of second order in the Reynolds number. The results for the particle migration
perpendicular to the wall appear in a quantity L and are interpreted either in terms
of a lift force (see (2.23)) or in terms of a migration velocity for a freely moving
sphere (see (2.24)). The 10 terms of L (see (2.28)) involve the sphere translation and
rotation, the linear and quadratic parts of the shear flow and all binary couplings.
They are obtained precisely for a large range of sphere-to-wall gaps down to 0.01 of a
sphere radius (see table 1). These results for small gaps needed accurate calculations
with a large number of digits, based on earlier accurate results of a creeping flow.
The calculation required an increasingly larger time for smaller gaps; the lowest gap
value of 0.01 considered here is usually sufficient in practice. The various results for
the lift force are also displayed as figures and match with earlier results whenever
available. Handy fitting formulae are provided in view of applications. Results for
the migration velocity of a freely translating sphere are also given explicitly, for a
non-rotating sphere with a prescribed translation velocity and for a freely moving
sphere, the sphere being entrained by a parabolic shear flow. Here also, our results
match with earlier ones. Typical particle trajectories are shown as examples. The
importance of the near-wall hydrodynamic interactions is emphasized by the long
time it takes for a particle to escape this near-wall region.

In this presentation, we did not consider any external supplementary force or torque
acting on the particle. However, such forces might be relevant in applications and
a discussion is appropriate. As explained above, the present analysis is limited to
motions perpendicular to the wall being of second order in the Reynolds number.
Otherwise, some supplementary coupling terms due to fluid inertia would arise. Thus,
we exclude here a force perpendicular to the wall that would give a sphere velocity
of the same order as the motion along the wall. However, this analysis allows for a
small force perpendicular to the wall, of the same order as the lift due to fluid inertia.
For a force along the wall, any force may be applied since its effect is embedded in
the case of the arbitrary sphere motion along the wall. For the same reason as for the
force perpendicular to the wall, any external torque considered here should be small,
giving at most velocities of the order of the migration velocity.

A typical example of application is the FFF technique in analytical chemistry. There
is usually another external force (either the gravity force in a horizontal channel or
some other body force) of the same order as the lift force. Particles are assumed to
be freely rotating. Since the external force and the lift force are of the same order,
any coupling between their effects would be of third order and thus negligible. It
is then a simple matter to add up the effects of these two forces so as to find the
trajectories of particles. As compared with figure 13, the balance of both forces will
change the final equilibrium position of the particle. This is how the FFF separation
technique works: particles eventually reach some limiting streamline which depends
on their size and are separated therefrom. A question which arises in FFF is the lift
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force at start-up, when particles are close to one wall. This problem is resolved here,
allowing us to determine the transient motion of particles. Thus, our calculation will
allow us to refine the length of the channel necessary for separation. In this sense, the
results presented here provide a contribution to the improvement of modelling of such
separation techniques and are intended primarily to be compared with experiments.

Appendix A. Solutions of the Stokes flows
The solution of the Stokes momentum equation (2.7) for the pressure p and velocity

(vρ, vφ, vz) is searched for in the following form:

p• = cM−1Q•
1 cos φ, v•

ρ =
1

2
cM

(
ρ

c
Q•

1 +
(
U •

2 + U •
0

))
cos φ, (A 1a)

v•
φ =

1

2
cM
(
U •

2 − U •
0

)
sinφ, v•

z =
1

2
cM

(
z

c
Q•

1 + 2W •
1

)
cos φ, (A 1b)

where

W •
1 = (cosh ξ − µ)1/2 sin η

∞∑
n=1

[
0, A•

n

]
P ′

n(µ), (A 2a)

Q•
1 = (cosh ξ − µ)1/2 sin η

∞∑
n=1

[
B•

n, C
•
n

]
P ′

n(µ), (A 2b)

U •
0 = (cosh ξ − µ)1/2

∞∑
n=0

[
D•

n, E
•
n

]
Pn(µ), (A 2c)

U •
2 = (cosh ξ − µ)1/2 sin2 η

∞∑
n=2

[
F •

n , G•
n

]
P ′′

n (µ). (A 2d)

The symbol (•) represents any of the letters T , R, S and Q, which correspond to the
four basic flows: translation (M = 0), rotation (M =1), linear shear flow (M = 1) and
quadratic shear flow (M = 2). Here, µ = cos η, Pn is the Legendre polynomial of order
n and P ′

n(µ) (respectively P ′′
n (µ)) is given by ∂Pn(µ)/∂µ (respectively ∂2Pn(µ)/∂µ2).

We also used the shorthand notation:[
B•

n, C
•
n

]
= B•

n cosh
(
n + 1

2

)
ξ + C•

n sinh
(
n + 1

2

)
ξ. (A 3)

The velocity satisfies the no-slip condition on the wall. It also vanishes at infinity
since ξ = η = 0 there. Then applying the no-slip boundary condition on the sphere
surface, the coefficients B•

n, C
•
n, C

•
n, D

•
n, E

•
n, F

•
n are expressed in terms of the A•

n (see,
e.g., Chaoui & Feuillebois 2003). An appropriate solution using an iterative technique
was proposed by O’Neill & Bhatt (1991) and applied by Chaoui & Feuillebois (2003)
using high-precision arithmetic. The linear shear flow Ṽ ∞

x = K̃Sz̃ was considered in
their article and the quadratic shear flow Ṽ ∞

x = K̃Qz̃2 in Pasol et al. (2006).

Appendix B. Details of calculation of the lift force
B.1. Velocity gradients

Here, we calculate the velocity gradients in bispherical coordinates appearing in
(2.28) for the lift force. The components of the gradient of the vS, vQ, vT , vR, V ∞

S , V ∞
Q
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velocities, i.e. ∇v• and ∇V ∞
• , may be written as a matrix G•:

G• =

⎡
⎢⎣

g•
ηη cos φ g•

ηξ cosφ g•
ηφ sinφ

g•
ξη cos φ g•

ξξ cos φ g•
ξφ sinφ

g•
φη sinφ g•

φξ sin φ g•
φφ cos φ

⎤
⎥⎦. (B 1)

B.1.1. Perturbed flows

Using the expressions of the perturbed velocities in bispherical coordinates (see
Appendix A):

v•
η =

cosh ξ − cos η

c

[
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ρ
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with the expressions for h•
η, h•

ξ and h•
φ in bispherical coordinates:
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the components of the velocity gradient are:
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B.1.2. Unperturbed linear and quadratic shear flows

The components of the gradient of the unperturbed linear shear flow velocity ∇V ∞
S

are expressed as

gS∞
ηη = −sin η sinh ξ (cos η cosh ξ − 1)
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, (B 17)
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For the unperturbed quadratic shear flow, we have
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ε 0.1 1 2 5 10 99

CS
1 19.99375 3.21560 2.32739 1.84020 1.70156 1.60019

CS
2 35.29968 2.22142 1.35978 0.96086 0.86238 0.80023

C
Q
1 32.35269 7.69521 7.69207 11.36900 18.89371 161.63892

C
Q
2 65.19162 5.81405 4.75907 6.05659 9.64022 80.84004

CR
1 −4.80727 −0.34840 −0.13188 −0.03028 −0.00884 0.00010

CR
2 −12.00081 −0.40590 −0.14029 −0.03072 −0.00887 0.00010

CT
1 −13.60523 −1.41229 −0.72399 −0.30038 −0.15365 −0.01584

CT
2 −18.36594 −0.85731 −0.39418 −0.15352 −0.07734 −0.00792

Table 2. Values of the coefficients appearing in (C1) versus the dimensionless gap ε.

B.2. An example of integral for the lift force

Using the preceding results, we obtain, for example, the lift term in (2.28) for a purely
rotating sphere:

LR =

∫ π

0

∫ α

0

∫ 2π

0

[wη

2

{
hR

η gR
ηη + hR

ξ gR
ξη + hR

φ gR
φη

}
+

wξ

2

{
hR

η gR
ηξ + hR

ξ gR
ξξ + hR

φ gR
φξ

}
+ CR(η, ξ ) cos 2φ

]
dη dξ dφ. (B 31)

The coefficients wη and wξ correspond to the components of the velocity field w in
a Stokes flow for a sphere moving normal to the wall with a unit velocity. Details
are given in Yahiaoui (2008). It may be noted that the integral of the CR(η, ξ ) cos 2φ

term for φ in [0, 2π] vanishes.

Appendix C. Expansions of the velocity fields far from the particle
Here, we discuss the asymptotic expansions of the velocities at infinity in the half-

space fluid domain Vf , in order to quantify these quantities and estimate the decay of
the integrand f · w, giving convergent integrals for the lift force (2.28). The point at
infinity in Cartesian or cylindrical coordinates corresponds to η = ξ = 0 in bispherical
coordinates. Far-field expansions are derived in terms of a small parameter δ � 1,
replacing (η, ξ ) by (η′δ, ξ ′δ), where η′ and ξ ′ are of order unity.

C.1. The basic flow velocities

The expansions of the basic flow velocities far from the particle were obtained using
MapleTM symbolic calculus software. Results are detailed below.

(i) Velocities for the cases of rotation, translation, linear and quadratic shear flows
are functions of (h•

η, h
•
ξ , h

•
φ), which have the following expansions:

h•
η 
 C•

1

√
2

η2ξ ′√
η

′2 + ξ
′2

δ2, h•
ξ 
 C•

1

√
2

η′ξ
′2√

η
′2 + ξ

′2
δ2 and h•

φ 
 C•
2√
2
ξ

′2
√

η
′2 + ξ

′2δ3,

(C 1)

where the constants C•
1 and C•

2 are functions of the position ε = �/a − 1; values are
given for 0.1 � ε � 99 in table 2.

From the above results, the velocities v(0) at infinity scale like δ2, that is like 1/‖r‖2.
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ε 0.1 1 2 5 10 99

C⊥ −29.55469 −1.15330 −0.48353 −0.16996 −0.08165 −0.00797

Table 3. Values of C⊥ versus the dimensionless gap ε.

ε 0.1 1 2 5 10 99

Cr 0.91652 3.4641 5.6568 11.8321 21.9089 201.9901

Table 4. Values of Cr versus the dimensionless gap ε.

(ii) The velocity w in the case of sedimentation of the sphere perpendicular to the
wall is a function of h⊥

η and h⊥
ξ , which have the following expansions:

h⊥
η 
 C⊥

√
2
η′ξ ′ ξ

′2 − 2η′2√
η′2 + ξ

′2
δ3, h⊥

ξ 
 C⊥
√

2
ξ ′2 2ξ ′2 − η′2√

η
′2 + ξ

′2
δ3, (C 2)

where C⊥ is given in table 3.
From the above results, the velocity w at infinity scales like δ3, that is like 1/‖r‖3.

This is the result found by Blake (1971) for the behaviour of the fluid velocity at a
large distance from a particle moving perpendicular to a wall in a fluid at rest.

C.2. Expansion of the distance

The distance from the origin to a point in the flow field is given by ‖r‖ =

c
√

(cosh ξ + cos η)/(cosh ξ − cos η). Its expansion for small η and ξ is ‖r‖ 

C r/(δ

√
η

′2 + ξ ′2), where Cr is given in table 4.

C.3. Convergence of the integral for the lift force

We now study the convergence of the integral for the lift force in (2.23):

L =

∫
Vf

f · w dV, (C 3)

with f = v(0) · ∇v(0) + v(0) · ∇V ∞ + V ∞ · ∇v(0) − U (0)
p · ∇v(0).

From the results of the preceding §§ C.1 and C.2, we have

v(0) ≈ 1

‖r‖2
, w ≈ 1

‖r‖3
, U (0)

p = O(1), V ∞
S ≈ ‖r‖, V ∞

Q ≈ ‖r‖2 and ∇ ≈ 1

‖r‖ .

(C 4)

Thus, f · w ≈ 1/‖r‖4 and the integral is convergent.
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